Marcelliniโ€™s Blog
  • Home
  • ๐Ÿงญ Explore
    • ๐Ÿท๏ธ Tags
    • ๐Ÿ“‚ Categories
  • ๐Ÿง  Exact Sciences
    • ๐Ÿงฎ Mathematics
    • ๐Ÿ“Š Statistics
    • ๐Ÿ”ญ Physics
    • ๐Ÿ’ป Programming
  • ๐Ÿ“ Personal Blog
    • ๐Ÿ“ Personal Blog
    • ๐Ÿ‘ค About Me and the Blog
  • ๐Ÿ“˜ Courses
    • ๐Ÿงฎ Math Courses
    • ๐Ÿ“Š Statistics Courses
  • ๐Ÿ—บ๏ธ Site Map
  • PT ๐Ÿ‡ง๐Ÿ‡ท
  • Contact

In This Module

  • 1 Order in \(\mathbb{R}\)
    • 1.1 Examples
  • 2 Non-Strict Inequalities
  • 3 Fundamental Theorems of Order
  • 4 Chains of Inequalities
  • 5 Intervals
    • 5.1 Open interval
    • 5.2 Closed interval
    • 5.3 Half-open intervals
    • 5.4 Infinite intervals
  • 6 Linear Inequalities
  • 7 Quadratic Inequalities
  • 8 Product Inequalities
  • 9 Quotient Inequalities
    • 9.1 ๐Ÿ“Œ What are Asymptotes?
    • 9.2 ๐Ÿง  Review Exercises
  • 10 ๐Ÿ”Ž Summary Sheet โ€” Module 1.3 (Order, Intervals, and Inequalities)
  • 11 ๐Ÿ”— Navigation

๐Ÿ“˜ Module 1.3: Intervals and Inequalities

calculus
mathematics
intervals
inequalities
functions
courses
Definition of order in โ„, intervals, and linear and quadratic inequalities, with examples, theorems, and diagrams.
Author

Blog do Marcellini

Published

September 7, 2025

โ† Back to Course Summary ๐ŸŽ“๐Ÿงฎ ยท โ† Math Courses ยท โ† Mathematics Section

๐ŸŽฏ Previous Post: ๐Ÿ‘‰ 1.2 Number Sets (Advanced)


1 Order in \(\mathbb{R}\)

๐Ÿ“– Definition โ€” Strict Order

Let \(a,b \in \mathbb{R}\): 1. \(a < b \iff b-a > 0\); 2. \(a > b \iff a-b > 0\).

1.1 Examples

  • \(3<7\), since \(7-3=4>0\).

  • \(-5<-2\), since \(-2-(-5)=3>0\).

Generic diagram:


2 Non-Strict Inequalities

๐Ÿ“– Definition โ€” Non-Strict Order

Let \(a,b \in \mathbb{R}\):

  1. \(a \leqslant b \iff (a<b) \text{ or } (a=b)\);
  2. \(a \geqslant b \iff (a>b) \text{ or } (a=b)\).
  • \(a<b\) and \(a>b\): strict inequalities.
  • \(a\leqslant b\) and \(a\geqslant b\): non-strict inequalities.

3 Fundamental Theorems of Order

๐Ÿ“ Theorem 1 โ€” Signs
  1. \(a>0 \iff a\) is positive.
  2. \(a<0 \iff a\) is negative.
๐Ÿ“ Theorem 2 โ€” Transitivity

If \(a<b\) and \(b<c\), then \(a<c\).

๐Ÿ“ Theorem 3 โ€” Addition and Multiplication
  1. If \(a<b\), then \(a+c<b+c\).
  2. If \(a<b\) and \(c>0\), then \(ac<bc\).
  3. If \(a<b\) and \(c<0\), then \(ac>bc\).
๐Ÿ“ Theorem 4 โ€” Sum of Inequalities

If \(a<b\) and \(c<d\), then \(a+c<b+d\).

4 Chains of Inequalities

A number \(x\) is between \(a\) and \(b\) if \(a<x<b\).
Example: \(2<x<5\).

Other forms:
- \(a \leqslant x \leqslant b\) โ†’ closed interval;
- \(a \leqslant x < b\), \(a < x \leqslant b\) โ†’ half-open intervals.


5 Intervals

5.1 Open interval

\[(a,b) = \{x\in\mathbb{R}\mid a<x<b\}\]

5.2 Closed interval

\[[a,b] = \{x\in\mathbb{R}\mid a\leqslant x\leqslant b\}\]

5.3 Half-open intervals

  • \((a,b] = \{x \mid a<x\leqslant b\}\)

  • \([a,b) = \{x \mid a\leqslant x<b\}\)

5.4 Infinite intervals

  • \((a,+\infty) = \{x \mid x>a\}\)

  • \((-\infty,b) = \{x \mid x<b\}\)

  • \([a,+\infty) = \{x \mid x\geqslant a\}\)

  • \((-\infty,b] = \{x \mid x\leqslant b\}\)

  • \((-\infty,+\infty)=\mathbb{R}\)


6 Linear Inequalities

General form (with \(a \neq 0\)):

\[ \boxed{\, ax+b < c \,} \]

\[ \boxed{\, ax+b \leqslant c \,} \]

\[ \boxed{\, ax+b > c \,} \]

\[ \boxed{\, ax+b \geqslant c \,} \]


๐Ÿ“Œ Important note:
- If \(a=0\), the inequality reduces to a constant statement (\(b<c\), \(b\leqslant c\), etc.), with no variable.
- If \(a\neq 0\), we can isolate \(x\):

  • For \(a>0\), the order is preserved.
  • For \(a<0\), the inequality reverses its direction.
๐Ÿงฎ Examples โ€” Linear Inequalities

6.1 Cases with \(a>0\)

  1. \(2x-3<5 \;\;\Rightarrow\;\; x<4\)
    Solution: \((-\infty,4)\).

  2. \(3x+1\leqslant 7 \;\;\Rightarrow\;\; x\leqslant 2\)
    Solution: \((-\infty,2]\).

  3. \(5x-4>11 \;\;\Rightarrow\;\; x>3\)
    Solution: \((3,+\infty)\).

  4. \(4x+2\geqslant 10 \;\;\Rightarrow\;\; x\geqslant 2\)
    Solution: \([2,+\infty)\).


6.2 Cases with \(a<0\)

  1. \(-2x+3<7 \;\;\Rightarrow\;\; x>-2\)
    Solution: \((-2,+\infty)\).

  2. \(-3x+1\leqslant -8 \;\;\Rightarrow\;\; x\geqslant 3\)
    Solution: \([3,+\infty)\).

  3. \(-4x+5>1 \;\;\Rightarrow\;\; x<1\)
    Solution: \((-\infty,1)\).

  4. \(-x-2\geqslant 5 \;\;\Rightarrow\;\; x\leqslant -7\)
    Solution: \((-\infty,-7]\).


๐Ÿ“Œ Key summary:
- If \(a>0\), the inequality keeps its direction.
- If \(a<0\), the inequality reverses its direction.

๐Ÿงฎ Worked Examples in Detail
  • Example 1: \(2x-3<5\) (coefficient \(a>0\))

\[ \begin{aligned} 2x-3 &< 5 && \text{(given)}\\ 2x &< 5+3 = 8 && \text{(add 3 to both sides)}\\ x &< \frac{8}{2} = 4 && \text{(divide by 2>0, inequality preserved)} \end{aligned} \]

โœ… Solution (interval): \((-\infty,4)\).
๐Ÿ“Œ Check: \(x=3 \Rightarrow 3<5\) (true); \(x=4 \Rightarrow 5\not<5\) (false).


  • Example 5: \(-2x+3<7\) (coefficient \(a<0\))

\[ \begin{aligned} -2x+3 &< 7 && \text{(given)}\\ -2x &< 7-3 = 4 && \text{(subtract 3 from both sides)}\\ x &> \frac{4}{-2} = -2 && \text{(divide by -2<0, \textbf{reverse} the inequality)} \end{aligned} \]

โœ… Solution (interval): \((-2,+\infty)\).
๐Ÿ“Œ Check: \(x=0 \Rightarrow 3<7\) (true); \(x=-2 \Rightarrow 7\not<7\) (false).


Teaching summary:
- Adding/subtracting: inequality preserved.
- Multiplying/dividing by a positive number: inequality preserved.
- Multiplying/dividing by a negative number: inequality reversed.


7 Quadratic Inequalities

General form (with \(a \neq 0\)):

\[ \boxed{ax^2 +bx + c < 0} \]

\[ \boxed{ax^2 +bx + c > 0} \]

\[ \boxed{ax^2 +bx + c \leqslant 0} \]

\[ \boxed{ax^2 +bx + c \geqslant 0} \]


Solve by analyzing the parabola \(y=ax^2+bx+c\).

๐Ÿ“Œ Example 1: \(x^2-5x+6>0\)
- Roots: \(x=2,3\)
- Parabola opens upwards.
- Positive sign outside of \((2,3)\).
- Solution: \((-\infty,2)\cup(3,+\infty)\).

Diagram on the real line:

Parabola graph:


๐Ÿ“Œ Example 1: \(x^2-5x+6>0\)

๐Ÿงฎ Detailed Solution
  1. Identification: quadratic inequality with \(a=1>0\), \(b=-5\), \(c=6\).

  2. Associated equation:
    \[ x^2 - 5x + 6 = 0 \]

  3. Discriminant (ฮ”):
    \[ \Delta = b^2 - 4ac = (-5)^2 - 4\cdot 1 \cdot 6 = 25 - 24 = 1 \]

  4. Real roots:
    \[ x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{5 \pm 1}{2} \] Thus, \(x_1=2\) and \(x_2=3\).

  5. Sketch of the parabola: since \(a=1>0\), the parabola is concave upward.

  6. Sign of the parabola:

    • For \(x<2\), the parabola is above the axis (\(f(x)>0\)).
    • For \(2<x<3\), the parabola is below the axis (\(f(x)<0\)).
    • For \(x>3\), the parabola is again above the axis (\(f(x)>0\)).
  7. Conclusion (solution of the inequality \(f(x)>0\)):
    \[ x \in (-\infty,2)\cup(3,+\infty) \]

Diagram on the real line:

Parabola graph and sign analysis:


๐Ÿ“Œ Example 2: \(-x^2+4x-3 \geqslant 0\)

๐Ÿงฎ Detailed Solution
  1. Identification: quadratic inequality with \(a=-1<0\), \(b=4\), \(c=-3\).

  2. Associated equation:
    \[ -x^2+4x-3=0 \]

  3. Discriminant (ฮ”):
    \[ \Delta = b^2-4ac = (4)^2 - 4\cdot(-1)\cdot(-3) = 16 - 12 = 4 \]

  4. Real roots:
    \[ x=\frac{-b\pm\sqrt{\Delta}}{2a} = \frac{-4\pm 2}{-2} \] Thus, \(x_1=1\) and \(x_2=3\).

  5. Sketch of the parabola: since \(a=-1<0\), the parabola is concave downward.
    This means the parabola is above the \(x\)-axis between the roots and below it outside.

  6. Sign of the parabola:

    • For \(x<1\), \(f(x)<0\).
    • For \(1\leqslant x\leqslant 3\), \(f(x)\geqslant 0\).
    • For \(x>3\), \(f(x)<0\) again.
  7. Conclusion (solution of the inequality \(f(x)\geqslant 0\)):
    \[ x \in [1,3] \]

Diagram on the real line:

Parabola graph and sign analysis:


8 Product Inequalities

General form:

\[ \boxed{(x-a)(x-b) < 0} \]

\[ \boxed{(x-a)(x-b) > 0} \]

\[ \boxed{(x-a)(x-b) \leqslant 0} \]

\[ \boxed{(x-a)(x-b) \geqslant 0} \]

The solution is determined by the sign of the factors in each interval defined by the roots.


๐Ÿ“Œ Example 1: Positive product
Solve: \[ x(x-1) > 0 \]

Detailed solution
  • Roots: \(x=0\) and \(x=1\).
  • Intervals: \((-\infty,0),\ (0,1),\ (1,+\infty)\).
  • Sign test:
    • For \(x<0\): both factors negative โ‡’ product positive.
    • For \(0<x<1\): one positive, one negative โ‡’ product negative.
    • For \(x>1\): both positive โ‡’ product positive.

โœ… Solution: \((-\infty,0)\cup(1,+\infty)\).


๐Ÿ“Œ Example 2: Negative product
Solve: \[ (x-1)(x+2) < 0 \]

Detailed solution
  • Roots: \(x=-2\) and \(x=1\).
  • Intervals: \((-\infty,-2),\ (-2,1),\ (1,+\infty)\).
  • Sign test:
    • For \(x<-2\): both negative โ‡’ product positive.
    • For \(-2<x<1\): different signs โ‡’ product negative.
    • For \(x>1\): both positive โ‡’ product positive.

โœ… Solution: \((-2,1)\).


9 Quotient Inequalities

General form:

\[ \boxed{\dfrac{f(x)}{g(x)} < 0,\quad g(x)\neq 0} \]

\[ \boxed{\dfrac{f(x)}{g(x)} > 0,\quad g(x)\neq 0} \]

\[ \boxed{\dfrac{f(x)}{g(x)} \leqslant 0,\quad g(x)\neq 0} \]

\[ \boxed{\dfrac{f(x)}{g(x)} \geqslant 0,\quad g(x)\neq 0} \]

The solution is determined by the sign chart of numerator and denominator.


9.1 ๐Ÿ“Œ What are Asymptotes?

๐Ÿ“– Definitions

Let a rational function \(f(x)=\dfrac{p(x)}{q(x)}\).

  • Vertical asymptote:
    We say that \(x=a\) is a vertical asymptote if:
    • \(q(a)=0\) (the denominator vanishes at \(a\)); and
    • \(p(a)\ne0\) (the numerator does not vanish at \(a\)).
      In this case, \(f(x)\) is not defined at \(x=a\) and the graph of the function approaches a vertical line at \(x=a\).
  • Horizontal asymptote:
    We say that \(y=L\) is a horizontal asymptote if \[ \lim_{x\to\pm\infty} f(x) = L. \] This means that, for very large positive or negative values of \(x\), the graph of \(f(x)\) approaches the horizontal line \(y=L\).

๐Ÿ“Œ These concepts will be explored in detail in the Module on Rational Functions and, more rigorously, in the Module on Limits.

๐Ÿ”Ž Remark
  • In problems involving rational inequalities, the values that annihilate the denominator never belong to the solution, since the expression becomes undefined.
  • Therefore, we treat these points as boundaries in the sign analysis, and call them vertical asymptotes.
  • Horizontal asymptotes help describe the behavior at infinity of a rational function.

๐Ÿ“Œ Example 1: Positive quotient
Solve: \[ \frac{x+1}{x-3} > 0 \]

Detailed solution
  • Zeros: numerator \(x=-1\).
  • Asymptote: denominator \(x=3\).
  • Intervals: \((-\infty,-1),\ (-1,3),\ (3,+\infty)\).
  • Signs:
    • \((-\infty,-1)\): both negative โ‡’ quotient positive.
    • \((-1,3)\): numerator positive, denominator negative โ‡’ quotient negative.
    • \((3,+\infty)\): both positive โ‡’ quotient positive.

โœ… Solution: \((-\infty,-1)\cup(3,+\infty)\).


๐Ÿ“Œ Example 2: Quotient with more factors
Solve: \[ \frac{x^2-1}{x^2-3x} > 0 \]

Detailed solution

\[ \frac{(x-1)(x+1)}{x(x-3)} > 0, \quad x\neq 0,3. \]

  • Zeros/asymptotes: \(-1,\,0,\,1,\,3\).
  • Intervals: \((-\infty,-1),\ (-1,0),\ (0,1),\ (1,3),\ (3,\infty)\).
  • Sign test:
    • \((-\infty,-1)\): positive.
    • \((-1,0)\): negative.
    • \((0,1)\): positive.
    • \((1,3)\): negative.
    • \((3,\infty)\): positive.

โœ… Solution: \((-\infty,-1)\cup(0,1)\cup(3,\infty)\).


๐Ÿ“ Proposed Exercises
  1. Represent on the real line:
    1. \((1,5]\)
    2. \((-\infty,-2)\)
    3. \([-3,3]\)
  2. Solve:
    1. \(3x+1\geqslant 7\)
    2. \(x^2-4\leqslant 0\)
    3. \((x-1)(x-4)<0\)
โœ… Answer Key
    1. open dot at 1, closed dot at 5
    2. up to \(-2\) (open)
    3. closed from \(-3\) to \(3\)
    1. \([2,+\infty)\)
    2. \([-2,2]\)
    3. \((1,4)\)

9.2 ๐Ÿง  Review Exercises


Exercise 1 โ€” Compound inequality and interval

Solve and write the solution in interval notation: \[ 1<2x+3\le 9 \]

Step-by-step solution

\[ \begin{aligned} 1<2x+3\le 9 &\iff 1-3<2x\le 9-3 \\ &\iff -2<2x\le 6 \\ &\iff -1<x\le 3 \quad (\text{divide by }2>0) \end{aligned} \] Solution: \((-1,3]\).


Exercise 2 โ€” Negative coefficient (sign inversion)

Solve: \[ -3x+5\ge 2 \]

Step-by-step solution

\[ \begin{aligned} -3x+5\ge 2 &\iff -3x\ge -3 \\ &\iff x\le 1 \quad (\text{divide by }-3<0 \Rightarrow \text{flip inequality}) \end{aligned} \] Solution: \((-\infty,1]\).


Exercise 3 โ€” Factorable quadratic inequality (< 0)

Solve: \[ x^2-x-6<0 \]

Step-by-step solution

Factoring: \(x^2-x-6=(x-3)(x+2)\).
Roots: \(x=-2\) and \(x=3\). Since \(a=1>0\), the parabola is concave upwards.
Thus, \(f(x)<0\) between the roots: \[ x\in(-2,3). \] Solution: \((-2,3)\).


Exercise 4 โ€” Quadratic inequality (non-integer roots) (โ‰ฅ 0)

Solve: \[ 2x^2+3x-2\ge 0 \]

Step-by-step solution

Discriminant: \(\Delta=b^2-4ac=3^2-4\cdot2\cdot(-2)=9+16=25\).
Roots: \[ x=\frac{-3\pm\sqrt{25}}{2\cdot2}=\frac{-3\pm5}{4}\;\Rightarrow\;x_1=-2,\;x_2=\tfrac12. \] With \(a=2>0\), the parabola is concave upwards; so \(f(x)\ge 0\) outside the interval between the roots (and includes the roots because it is \(\geqslant\)): \[ x\in(-\infty,-2]\cup\left[\tfrac12,\infty\right). \] Solution: \((-\infty,-2]\cup[0.5,\infty)\).


Exercise 5 โ€” Operations with intervals

Let \(A=(-\infty,4)\) and \(B=[1,7)\).
(a) \(A\cap B\) (b) \(A\cup B\)

Step-by-step solution
  • \(A\cap B\): points that are in both.
    \(A\) goes up to \(4\) (open), \(B\) starts at \(1\) (closed) and goes up to \(7\) (open).
    Intersection: from \(1\) to \(4\), including \(1\) and excluding \(4\): \([1,4)\).

  • \(A\cup B\): points that are in at least one.
    The union covers from \(-\infty\) up to \(7\) open (since \(B\) already covers \([1,7)\) and \(A\) covers \((-\infty,4)\)): \((-\infty,7)\).

Answers: (a) \([1,4)\) (b) \((-\infty,7)\).


Exercise 6 โ€” Solve the inequalities below.
  1. Product: \(x(x-1)>0\)
Step-by-step solution

Roots at \(x=0\) and \(x=1\). Since the leading coefficient is \(+1\), the product is positive outside the interval between the roots.
โœ… Solution: \((-\infty,0)\cup(1,\infty)\).


  1. Product: \((x-1)(x+2)<0\)
Step-by-step solution

Roots at \(x=-2\) and \(x=1\). Leading coefficient \(+1\) โ‡’ negative between the roots.
โœ… Solution: \((-2,1)\).


  1. Quadratic: \(x^2+4x-21>0\)
Step-by-step solution

\(\Delta=4^2-4\cdot1\cdot(-21)=100\).
Roots: \(x=\tfrac{-4\pm10}{2}\Rightarrow x=-7,\,3\).
Parabola opens upwards โ‡’ \(>0\) outside.
โœ… Solution: \((-\infty,-7)\cup(3,\infty)\).


  1. Quadratic: \(2x^2+x<3\)
Step-by-step solution

\(2x^2+x-3<0\).
\(\Delta=1+24=25\).
Roots: \(x=\tfrac{-1\pm5}{4}\Rightarrow x=-\tfrac32,\,1\).
\(<0\) between the roots.
โœ… Solution: \(\left(-\tfrac32,\,1\right)\).


  1. Quadratic: \(4x^2+10x-6<0\)
Step-by-step solution

\(\Delta=10^2-4\cdot4\cdot(-6)=196\).
Roots: \(x=\tfrac{-10\pm14}{8}\Rightarrow x=-3,\,\tfrac12\).
\(<0\) between the roots.
โœ… Solution: \((-3,\,\tfrac12)\).


  1. Quadratic: \(x^2+2x+4>0\)
Step-by-step solution

\(\Delta=2^2-4\cdot1\cdot4=-12<0\) and \(a=1>0\) โ‡’ the expression is always positive.
โœ… Solution: \(\mathbb{R}\).


Exercise 7 โ€” Real radicals (radicand โ‰ฅ 0)
  1. \(\sqrt{4-x^2}\)
Step-by-step solution

We require \(4-x^2\ge0 \Rightarrow -2\le x\le 2\).
โœ… Solution: \([-2,2]\).


  1. \(\dfrac{1}{\sqrt{4-3x}}\)
Step-by-step solution

The radicand must be positive (and the denominator \(\ne0\)): \(4-3x>0 \Rightarrow x<\tfrac43\).
โœ… Solution: \((-\infty,\tfrac43)\).


  1. \(\dfrac{1}{\sqrt{x^2-x-12}}\)
Step-by-step solution

We require \(x^2-x-12>0\Rightarrow(x-4)(x+3)>0\) โ‡’ outside the roots.
โœ… Solution: \((-\infty,-3)\cup(4,\infty)\).


Exercise 8 โ€” Positivity of rational functions
  1. \(\dfrac{x}{x^2+4}>0\)
Step-by-step solution

Denominator \(x^2+4>0\) for all \(x\). Sign of the fraction = sign of \(x\).
โœ… Solution: \((0,\infty)\).


  1. \(\dfrac{x}{x^2-4}>0\)
Step-by-step solution

Critical points: \(x=0,\pm2\) (undefined at \(\pm2\)). Sign chart โ‡’ positive on \((-2,0)\) and \((2,\infty)\).
โœ… Solution: \((-2,0)\cup(2,\infty)\).


  1. \(\dfrac{x+1}{x-3}>0\)
Step-by-step solution

Zero: \(-1\). Asymptote: \(3\). Sign by intervals โ‡’ \((-\infty,-1)\) and \((3,\infty)\).
โœ… Solution: \((-\infty,-1)\cup(3,\infty)\).


  1. \(\dfrac{x^2-1}{x^2-3x}>0\)
Step-by-step solution

\(\dfrac{(x-1)(x+1)}{x(x-3)}>0\), with \(x\ne0,3\). Critical points: \(-1,0,1,3\).
Signs โ‡’ \((-\infty,-1)\cup(0,1)\cup(3,\infty)\).
โœ… Solution: \((-\infty,-1)\cup(0,1)\cup(3,\infty)\).


Exercise 9 โ€” Describe and diagram the set (in \(\mathbb{R}\))
  1. \(x^2<4\)
Step-by-step solution

\(-2<x<2\).
โœ… Solution: \((-2,2)\).


  1. \(x^2+3x-4>0\)
Step-by-step solution

\((x+4)(x-1)>0\) โ‡’ outside the roots.
โœ… Solution: \((-\infty,-4)\cup(1,\infty)\).


  1. \(x^2+6x+8\le0\)
Step-by-step solution

\((x+2)(x+4)\le0\) โ‡’ between the roots, including them.
โœ… Solution: \([-4,-2]\).


  1. \(x^2<5x+14\)
Step-by-step solution

\(x^2-5x-14<0\Rightarrow(x-7)(x+2)<0\) โ‡’ between the roots.
โœ… Solution: \((-2,7)\).


  1. \(2x^2>x+6\)
Step-by-step solution

\(2x^2-x-6>0\). \(\Delta=49\). Roots: \(-\tfrac32\) and \(2\).
\(>0\) outside.
โœ… Solution: \((-\infty,-\tfrac32)\cup(2,\infty)\).


  1. \(6x^2+13x<5\)
Step-by-step solution

\(6x^2+13x-5<0\). \(\Delta=289\). Roots: \(-\tfrac52\) and \(\tfrac13\).
\(<0\) between.
โœ… Solution: \((-\tfrac52,\,\tfrac13)\).


  1. \(x^3+3x^2>10x\)
Step-by-step solution

\(x(x^2+3x-10)=x(x+5)(x-2)>0\).
Sign chart with critical points \(-5,0,2\) โ‡’
โœ… Solution: \((-5,0)\cup(2,\infty)\).


Exercise 10 โ€” Solve
  1. \(-4<2-x<7\)
Step-by-step solution

Adding \(-2\): \(-6<-x<5\). Multiplying by \(-1\) (inequality flips): \(6>x>-5\).
โœ… Solution: \((-5,6)\).


  1. \(\dfrac{2x-1}{x}<3\)
Step-by-step solution

\[ \frac{2x-1}{x}-3=\frac{-x-1}{x}<0 \ \Longleftrightarrow\ \frac{x+1}{x}>0. \] Critical points: \(-1,0\). Signs โ‡’ positive on \((-\infty,-1)\) and \((0,\infty)\).
โœ… Solution: \((-\infty,-1)\cup(0,\infty)\).


  1. \(\dfrac{x}{x+2}<1\)
Step-by-step solution

\[ \frac{x}{x+2}-1=\frac{-2}{x+2}<0 \ \Longleftrightarrow\ \frac{2}{x+2}>0 \] (numerator \(>0\)) โ‡’ \(x+2>0 \Rightarrow x>-2\), with \(x\ne-2\).
โœ… Solution: \((-2,\infty)\).

10 ๐Ÿ”Ž Summary Sheet โ€” Module 1.3 (Order, Intervals, and Inequalities)


๐Ÿ“– Order Definitions in \(\mathbb{R}\)
  • \(a<b \iff b-a>0\); \(a>b \iff a-b>0\).
  • \(a\le b \iff (a<b \text{ or } a=b)\); \(a\ge b \iff (a>b \text{ or } a=b)\).
  • Strict inequalities: \(<,>\). Non-strict: \(\le,\ge\).

๐Ÿ“ Order Properties โ€” Quick use
  • Addition: \(a<b \Rightarrow a+c<b+c\).
  • Product with \(c>0\): inequality preserved.
  • Product with \(c<0\): inequality reversed.
  • Transitivity: if \(a<b\) and \(b<c\), then \(a<c\).

๐Ÿ“ฆ Intervals and Notation
  • Open: \((a,b)=\{x\mid a<x<b\}\).
  • Closed: \([a,b]=\{x\mid a\le x\le b\}\).
  • Half-open: \((a,b],\ [a,b)\).
  • Infinite: \((a,\infty),\ (-\infty,b),\ [a,\infty),\ (-\infty,b]\).

๐Ÿงฎ Linear Inequalities (with (a))

General form: \(\boxed{\,ax+b\ \{<,\le,>,\ge\}\ c\,}\)

Step-by-step
  1. Isolate the term \(ax\) (add/subtract on both sides).
  2. Divide by \(a\). If \(a<0\), flip the inequality.
  3. Write the solution in interval notation and test a value if useful.

๐ŸŸฆ Quadratic Inequalities
  • Study the sign of \(f(x)=ax^2+bx+c\) using roots and concavity.
  • \(\Delta=b^2-4ac\).
  • If \(a>0\): \(f(x)\) is \(>0\) outside the roots and \(<0\) between.
  • If \(a<0\): behavior reversed.
Step-by-step
  1. Solve \(ax^2+bx+c=0\) (factor/Quadratic Formula).
  2. Mark the roots on the number line and note concavity (sign of \(a\)).
  3. Select the intervals satisfying \(>,\ge,<,\le\).
  4. Include the roots if the inequality is non-strict (\(\ge,\le\)).

โœ–๏ธ Product Inequalities
  • Type: \((x-a)(x-b)\ \{<,>,\le,\ge\}\ 0\).
  • Rule: build a sign chart of factors; the product is \(+\) if an even number of negatives, \(โˆ’\) if odd.
Quick example

\(x(x-1)>0 \Rightarrow (-\infty,0)\cup(1,\infty)\).
(Roots \(0,1\); signs: \(+,-,+\); we want \(+\) โ†’ outside the interval.)


โž— Quotient Inequalities
  • Type: \(\dfrac{f(x)}{g(x)}\ \{<,>,\le,\ge\}\ 0\), with \(g(x)\ne0\).
  • Rule: signs are split by zeros of \(f\) (numerator) and asymptotes \(g=0\) (excluded!).
  • Quotient is \(+\) if numerator and denominator share the same sign; \(โˆ’\) if signs are opposite.
Quick example

\(\dfrac{x+1}{x-3}>0 \Rightarrow (-\infty,-1)\cup(3,\infty)\).
(Criticals \(-1\) [zero] and \(3\) [asymptote]; signs: \(+,-,+\); we want \(+\).)


๐Ÿงฐ Quick Checklist to Solve

โš ๏ธ Common Mistakes to Avoid
  • Forgetting to flip the inequality when dividing by a negative number.
  • Including asymptotes (\(g(x)=0\)) in quotients.
  • Not checking if the root is included when the relation is \(\ge\) or \(\le\).
  • Losing critical points when simplifying common factors (note restrictions first!).

11 ๐Ÿ”— Navigation

๐ŸŽฏ Next Post: ๐Ÿ‘‰ 1.3 Absolute Value and Modular Inequalities (Advanced)

โ† Course Summary ยท โ† Math Courses ยท ๐Ÿ” Top


Blog do Marcellini โ€” Exploring Mathematics with Rigor and Beauty.

Note

Created by Blog do Marcellini with โค๏ธ and code.

ยฉ 2025 - Marcelliniโ€™s Blog

 

๐Ÿ“ฌ Contact via Email
๐Ÿ’ป GitHub Repository