📘 Module 1.3 AP: Absolute Value and Modular Inequalities
← Back to the Course Summary 🎓🧮 · ← Mathematics Courses · ← Mathematics Section
🎯 Previous Post: 👉 1.3 Intervals and Inequalities
- Define the absolute value (modulus) and interpret it geometrically.
- Present the fundamental properties of the modulus.
- Introduce and apply the triangle inequality.
- Solve inequalities involving absolute value.
- Consolidate learning with examples and exercises.
1 Definition of Absolute Value
The absolute value (or modulus) of a real number \(x\) is defined by: \[ |x| = \begin{cases} x, & \text{if } x \ge 0, \\ -x, & \text{if } x < 0. \end{cases} \]
2 Geometric Interpretation
- The modulus represents the distance from \(x\) to the origin on the real line.
- Hence, \(|x|\ge 0\) for all \(x \in \mathbb{R}\).
3 Properties of the Absolute Value
- \(|x|\ge 0\) and \(|x|=0 \iff x=0\).
- \(|xy|=|x|\cdot|y|\).
- \(|\frac{x}{y}|=\frac{|x|}{|y|}\), if \(y\ne0\).
- \(|x+y|\le |x|+|y|\) (triangle inequality).
- \(||x|-|y||\le |x-y|\) (reverse triangle inequality).
- \(|x|=\max\{x,-x\}=\sqrt{x^2}\).
(1) By definition, \(|x|\) is the distance to the origin. Distances are never negative and vanish only at the origin (\(x=0\)).
(2) For \(x,y\in\mathbb{R}\), the sign of a product is the product of the signs, hence
\[ |xy| = (\pm x)\cdot(\pm y) = |x|\cdot |y|. \](3) For \(y\ne0\), divide the equality from (2):
\[ |x/y| = \frac{|x|}{|y|}. \](4) Triangle inequality. Geometrically, \(|x+y|\) is the distance from \(0\) to \(x+y\), which cannot exceed the sum of the distances from \(x\) and \(y\) to \(0\). Formally, using \(|xy|\le |x||y|\):
\[ |x+y|^2 = (x+y)^2 = x^2 + 2xy + y^2 \le x^2 + 2|x||y| + y^2 = (|x|+|y|)^2, \] hence \(|x+y|\le |x|+|y|\).(5) Reverse triangle inequality. From the triangle inequality, \(|x|=|(x-y)+y|\le |x-y|+|y|\Rightarrow |x|-|y|\le |x-y|\).
Swapping \(x\) and \(y\) gives \(|y|-|x|\le |x-y|\).
Combining both: \(||x|-|y||\le |x-y|\).(6) Characterizations of \(|x|\).
By cases, \(|x|=x\) if \(x\ge0\) and \(|x|=-x\) if \(x<0\).
Thus \(|x|=\max\{x,-x\}\). Since \(|x|\ge0\) and \(|x|^2=x^2\), we also have \(|x|=\sqrt{x^2}\).
3.1 📌 Useful equivalences for absolute-value inequalities
If \(a\ge0\), the following hold:
- \(|x|<a \iff -a<x<a\).
- \(|x|\le a \iff -a\le x\le a\).
- \(|x|>a \iff x<-a \ \text{or}\ x>a\).
- \(|x|\ge a \iff x\le -a \ \text{or}\ x\ge a\).
- \(|x-c|<r \iff c-r<x<c+r\) (open interval of radius \(r\) centered at \(c\)).
4 Worked Examples
Solve: \[ |x| = 3 \]
By definition:
- If \(x\ge0\), then \(|x|=x=3 \Rightarrow x=3\).
- If \(x<0\), then \(|x|=-x=3 \Rightarrow x=-3\).
✅ Solution: \(\{-3,3\}\).
Solve: \[ |x-2| < 5 \]
\(|x-2|<5 \iff -5 < x-2 < 5 \iff -3 < x < 7\).
✅ Solution: \((-3,7)\).
5 Absolute-Value Inequalities
An absolute-value inequality is an inequality involving absolute value, such as \[ |f(x)| \ \{<, \le, >, \ge\}\ a, \] with \(a\ge0\). The solution uses the piecewise definition of the modulus.
5.1 🔎 Case breakdown (with \(a\ge0\))
Case 1 — less than
\[ |f(x)|<a \iff -a<f(x)<a. \]Case 2 — less than or equal
\[ |f(x)|\le a \iff -a\le f(x)\le a. \]Case 3 — greater than
\[ |f(x)|>a \iff f(x)<-a \ \ \text{or}\ \ f(x)>a. \]Case 4 — greater than or equal
\[ |f(x)|\ge a \iff f(x)\le -a \ \ \text{or}\ \ f(x)\ge a. \]
- \(|f(x)|<0\): no solution.
- \(|f(x)|\le0\): equivalent to \(f(x)=0\).
- \(|f(x)|>0\): equivalent to \(f(x)\ne0\).
- \(|f(x)|\ge0\): always true (for all \(x\)).
5.2 🎯 Centered forms
For \(|x-c| \ \{<,\le,>,\ge\}\ r\) with \(r\ge0\):
- \(|x-c|<r \iff c-r<x<c+r\) (open interval)
- \(|x-c|\le r \iff c-r\le x\le c+r\) (closed interval)
- \(|x-c|>r \iff x<c-r \ \text{or}\ x>c+r\) (outside the interval)
- \(|x-c|\ge r \iff x\le c-r \ \text{or}\ x\ge c+r\)
5.3 ⚙️ Micro-examples
- \(|x-2|<5 \iff -5<x-2<5 \iff -3<x<7\).
- \(|2x+1|\ge3 \iff 2x+1\le-3\ \text{or}\ 2x+1\ge3 \iff x\le-2\ \text{or}\ x\ge1\).
6 Practice Exercises
- Solve: \(|x+1|\le4\).
- Solve: \(|2x-3|>5\).
- Solve: \(|x^2-1|<3\).
- Check whether \(|x+y|\le |x|+|y|\) for \(x=2, y=-5\).
- \(-4\le x+1\le4 \Rightarrow -5\le x\le3\).
- \(|2x-3|>5 \Rightarrow 2x-3>5\) or \(2x-3<-5\) ⇒ \(x>4\) or \(x<-1\).
- \(|x^2-1|<3 \Rightarrow -3<x^2-1<3 \Rightarrow -2<x^2<4\). Since \(x^2\ge0\), we get \(0\le x^2<4 \Rightarrow -2<x<2\).
- \(|2+(-5)|=|-3|=3\) and \(|2|+|{-5}|=2+5=7\). Indeed, \(3\le7\).