Marcelliniโ€™s Blog
  • Home
  • ๐Ÿงญ Explore
    • ๐Ÿท๏ธ Tags
    • ๐Ÿ“‚ Categories
  • ๐Ÿง  Exact Sciences
    • ๐Ÿงฎ Mathematics
    • ๐Ÿ“Š Statistics
    • ๐Ÿ”ญ Physics
    • ๐Ÿ’ป Programming
  • ๐Ÿ“ Personal Blog
    • ๐Ÿ“ Personal Blog
    • ๐Ÿ‘ค About Me and the Blog
  • ๐Ÿ“˜ Courses
    • ๐Ÿงฎ Math Courses
    • ๐Ÿ“Š Statistics Courses
  • ๐Ÿ—บ๏ธ Site Map
  • PT ๐Ÿ‡ง๐Ÿ‡ท
  • Contact

On this page

  • 1 ๐Ÿ“˜ ๐Ÿ‘จโ€๐Ÿ’ป ๐Ÿ“„ ๐Ÿ“Š R Code Templates for Use with Quarto
    • 1.1 Introduction
    • 1.2 Simple R code block
    • 1.3 Creating a base plot
    • 1.4 Using ggplot2
    • 1.5 Descriptive statistics
    • 1.6 Histogram
    • 1.7 Linear simple regression
    • 1.8 Plot with regression line
    • 1.9 Formated table with knitr::kable
    • 1.10 Conditional results with if
    • 1.11 Conclusion
  • 2 ๐Ÿ”— Useful Links

๐Ÿ“˜ ๐Ÿ‘จโ€๐Ÿ’ป ๐Ÿ“„ ๐Ÿ“Š R Code Templates for Use with Quarto

programming
R
Quarto
article
Quarto allows the direct execution of R code blocks in .qmd files. This makes it possible to generate dynamic reports, plots, statistical analyses, and interactive visualizations, all integrated with text.
Author

Blog do Marcellini

Published

June 29, 2025


โ† Back to the Programming Reading Guide ๐Ÿ‘จโ€๐Ÿ’ป

โ† Back to the R Section ๐Ÿ“Š

โ† Back to the Programming Section ๐Ÿ‘จโ€๐Ÿ’ป


R Language

1 ๐Ÿ“˜ ๐Ÿ‘จโ€๐Ÿ’ป ๐Ÿ“„ ๐Ÿ“Š R Code Templates for Use with Quarto

1.1 Introduction

Quarto allows the direct execution of R code blocks in .qmd files.
This makes it possible to generate dynamic reports, plots, statistical analyses, and interactive visualizations, all integrated with text.

The snippet below is the YAML header of the .qmd document, which defines the title, author, date, output format, and execution options for R code:

---
title: "R Code Templates for Use with Quarto"
author: "Blog do Marcellini"
date: 2025-06-23
format: html
editor: visual
lang: en
execute:
  engine: knitr
  echo: true
  warning: false
  message: false
---

1.2 Simple R code block

x <- 1:10
y <- x^2
y
 [1]   1   4   9  16  25  36  49  64  81 100

1.3 Creating a base plot

plot(x, y, type = "b", col = "blue", main = "Plot of xยฒ", xlab = "x", ylab = "y = xยฒ")


1.4 Using ggplot2

library(ggplot2)

df <- data.frame(x = x, y = y)

ggplot(df, aes(x, y)) +
  geom_line(color = "red", size = 1.2) +
  geom_point(color = "blue") +
  labs(title = "Plot with ggplot2", x = "x", y = "xยฒ")


1.5 Descriptive statistics

summary(mtcars)
      mpg             cyl             disp             hp       
 Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0  
 1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5  
 Median :19.20   Median :6.000   Median :196.3   Median :123.0  
 Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7  
 3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0  
 Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0  
      drat             wt             qsec             vs        
 Min.   :2.760   Min.   :1.513   Min.   :14.50   Min.   :0.0000  
 1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89   1st Qu.:0.0000  
 Median :3.695   Median :3.325   Median :17.71   Median :0.0000  
 Mean   :3.597   Mean   :3.217   Mean   :17.85   Mean   :0.4375  
 3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90   3rd Qu.:1.0000  
 Max.   :4.930   Max.   :5.424   Max.   :22.90   Max.   :1.0000  
       am              gear            carb      
 Min.   :0.0000   Min.   :3.000   Min.   :1.000  
 1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
 Median :0.0000   Median :4.000   Median :2.000  
 Mean   :0.4062   Mean   :3.688   Mean   :2.812  
 3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
 Max.   :1.0000   Max.   :5.000   Max.   :8.000  

1.6 Histogram

hist(mtcars$mpg, col = "lightblue", main = "MPG Distribution", xlab = "Miles per gallon")


1.7 Linear simple regression

model <- lm(mpg ~ hp, data = mtcars)
summary(model)

Call:
lm(formula = mpg ~ hp, data = mtcars)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.7121 -2.1122 -0.8854  1.5819  8.2360 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 30.09886    1.63392  18.421  < 2e-16 ***
hp          -0.06823    0.01012  -6.742 1.79e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.863 on 30 degrees of freedom
Multiple R-squared:  0.6024,    Adjusted R-squared:  0.5892 
F-statistic: 45.46 on 1 and 30 DF,  p-value: 1.788e-07

1.8 Plot with regression line

plot(mtcars$hp, mtcars$mpg, pch = 19, col = "gray", main = "MPG vs HP")
abline(model, col = "red", lwd = 2)


1.9 Formated table with knitr::kable

library(knitr)
kable(head(mtcars), caption = "First rows of the mtcars dataset")
First rows of the mtcars dataset
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

1.10 Conditional results with if

valor <- mean(mtcars$mpg)

if (valor > 20) {
  print("The average MPG is high.")
} else {
  print("The average MPG is low.")
}
[1] "The average MPG is high."

1.11 Conclusion

With Quarto and R, it is possible to integrate text, code, and results into a single dynamic and reproducible document.
These templates are a starting point for creating statistical and scientific reports with a high professional standard.


โ† Back to the Programming Reading Guide ๐Ÿ‘จโ€๐Ÿ’ป

โ† Back to the R Section ๐Ÿ“Š

โ† Back to the Programming Section ๐Ÿ‘จโ€๐Ÿ’ป


๐Ÿ” Back to Top


Blog do Marcellini โ€” Exploring Mathematics, Statistics, and Physics with Rigor and Beauty.

Note

Created by Blog do Marcellini with โค๏ธ and code.

2 ๐Ÿ”— Useful Links

  • ๐Ÿง‘โ€๐Ÿซ About the Blog
  • ๐Ÿ’ป Project GitHub
  • ๐Ÿ“ฌ Contact via Email

ยฉ 2025 - Marcelliniโ€™s Blog

 

๐Ÿ“ฌ Contact via Email
๐Ÿ’ป GitHub Repository